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ABSTRACT
To adequately model information exchanged in real human-human interactions, 
considering speech or text alone leaves out many critical modalities. The channels 
contributing to the “making of sense” in human-human interactions include but 
are not limited to gesture, speech, user-interaction modeling, gaze, joint attention, 
and involvement/engagement, all of which need to be adequately modeled to 
automatically extract correct and meaningful information. In this paper, we present a 
multimodal dataset of a novel situated and shared collaborative task, with the above 
channels annotated to encode these different aspects of the situated and embodied 
involvement of the participants in the joint activity.
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1 OVERVIEW
Repository location Zenodo: https://zenodo.org/records/10252341

CONTEXT

Making sense of face-to-face human-human interaction routinely involves more than just 
spoken or written language; other modalities include but are not limited to gesture, user-
interaction modeling, gaze, joint attention, and markers of involvement/engagement. This is 
particularly true in the case of modeling human collaboration. For instance, having students 
engage in collaborative problem solving (CPS) has been shown to be an effective pedagogical 
technique that is correlated with positive learning outcomes (Gillies, 2008; Langer-Osuna 
Gargroetzi, Munson, & Chavez, 2020; Roschelle & Teasley, 1995), and linguistic discourse alone 
does not reliably indicate effective collaboration.

The Weights Task Dataset (WTD) is a novel dataset of a situated, shared collaborative task, 
originally collected to study multimodal indicators of collaborative problem solving. This 
dataset complements other datasets for human-human interaction such as Anderson et al. 
(1991); Liu, Cai, Ji, and Liu (2017); Van Gemeren, Poppe, and Veltkamp (2016); Wang et al. 
(2017); Yun, Honorio, Chattopadhyay, Berg, and Samaras (2012), which lack at least one of: 
multimodal data, physical object manipulation, or multiparty interaction. Our data is novel 
in the joint presence of speech, gestures, and actions in a collaborative multiparty task. 
Annotation encodes many cross-cutting aspects of the situated and embodied involvement of 
the participants in joint activity.

2 METHOD
The Weights Task is completed by triads at a round table. A webcam captures the task 
equipment and participants. Kinect Azure cameras capture RGBD video from different angles. 
Task equipment includes 6 blocks (of varying weight, size, and color), a balance scale, a 
worksheet, and a computer with a survey where participants submit their answers.

2.1 STEPS

Participants (English speakers, ≥18 years) were recruited from the student body of Colorado State 
University. Informed consent was obtained. Table 1 shows breakdown of gender and ethnicity.

Participants are given a balance scale to determine the weights of five blocks. They are given 
the weight of one of the blocks (10g), and must determine the weights of the others. As the 
weight of each block is discovered, it is placed on the worksheet in the cell corresponding to the 
weight. Next, participants are given a new block and must identify its weight without the scale, 
by deducing it based on the pattern observed in the initial block weights. Finally, participants 
must infer the weight of the next hypothetical block in the set and explain how they determined 
it. After each stage, groups submit their answers in the survey form.

The dataset consists of 10 videos (~170 minutes). Table 2 provides descriptive statistics of the 
data. Figure 1 shows participants engaging with the objects on the table from the perspective 
of the main Kinect. Figure 2 shows different annotations (described below).

Utterance Segmentation and Transcription

Audio from all groups were segmented into utterances, or a single person’s continuous speech, 
delimited by silence, and transcribed. Segmentation and transcription were conducted by 
humans, by Google Cloud ASR (Velikovich et al., 2018), and by OpenAI’s Whisper model (Radford 
et al., 2023). Human transcription was performed by listening and transcribing what was 
said by each participant during a given manually-segmented utterance. Google and Whisper 
transcriptions were conducted over the utterances segmented by the same system (which 
may conflate overlapping speech by multiple people). Transcriptions are presented in .csv files.

Table 1 Participant pool 
distribution of gender and 
ethnic background. The task 
was conducted in English. 
Native languages besides 
English included Assamese, 
Bengali, Gujarati, Hindi, 
Malayalam, Persian, Spanish, 
Telugu, and Urdu.

MALE FEMALE CAUCASIAN 
NON-HISPANIC 

HISPANIC/
LATINO 

ASIAN

80% 20% 60% 10% 30%

https://zenodo.org/records/10252341
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Collaborative Problems Solving (CPS) Facets

CPS coding is performed at the utterance level using the framework of Sun et al. (2020). 
Annotators watched the video and coded each utterance with potentially multiple labels based 
on content, context, and position in the conversational sequence. Videos were annotated by 
two annotators (κ = 0.62) and adjudicated by an expert who underwent extensive training in 
the framework. CPS is presented in .csv files.

Gesture Abstract Meaning Representation (GAMR)

Participant gestures are annotated using the GAMR framework (Brutti, Donatelli, Lai, & 
Pustejovsky, 2022). Most WTD gestures are deictic, indicating reference to an object or a location. 
Iconic gestures represent attributes of an action or object. The meaning of emblematic gestures 
is set by cultural convention. GAMR was dual annotated by annotators trained by authors of the 
framework (SMATCH F1-score = 0.75). This data is presented in PENMAN notation in .eaf files.

Nonverbal Indicators of Collaborative-Learning Environments (NICE)

The NICE coding scheme (Dey et al., 2023) captures nonverbal behaviors when people are 
working together in groups, such as the direction of gaze, posture (e.g., leaning toward or 
away from the activity area), and usage of tools (including pointing at or to the tool, as well as 
directly manipulating it). NICE was annotated by an author of the framework over Groups 1–3 
and Group 5. This data is presented in .xlsx format.

Figure 1 Three participants 
engaged in the Weights Task. 
Participant #3 (on the right) 
is taking a block off the scale 
to try another configuration 
while Participant #2 (in the 
middle) wants to clarify the 
weight of the block under 
it. Multimodal information 
is required to make such a 
judgment.

Table 2 Dataset descriptive 
statistics.

AVG. SD MIN. MAX.

Participant age (yrs.) 24.58 4.58 19 35

Video length (mins.) 17.00 7.00 9 34

Figure 2 Multichannel (GAMR, 
NICE, speech transcription, 
and CPS) annotation “score” 
using ELAN (Brugman & Russel, 
2004).
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Azure Kinect Data

We extracted joint positions and orientations from each frame of the raw RGBD data, for all 
32 joints on each body detected by Microsoft’s body tracking SDK. This information (JSON) can 
be used to analyze body pose and gesture correlation to other modalities, or alone to classify 
gestures.

2.2 QUALITY CONTROL

By convention, participants are identified numerically from left (P1) to right (P3). Camera and 
microphone positioning are kept constant and the cameras calibrated using the standard 
Kinect SDK calibration procedure at the start of each session.

The raw data was recorded in .mkv format, including the depth channel, which is too large to 
include in the distributable dataset. We converted the RGB video to .mp4 and extracted the 
skeleton data from Azure depth channel.

In addition to individual .csv files, annotations have been loaded into .eaf files, which can be 
loaded in the ELAN environment (Brugman & Russel, 2004).

3 DATASET DESCRIPTION
Object name Weights Task Dataset

Format names and versions MP4, CSV, EAF, Excel, JSON

Creation dates 2022-09-22 — 2022-10-26

Dataset creators Ibrahim Khebour,1 Richard Brutti,2 Indrani Dey,3 Rachel Dickler,4 Kelsey 
Sikes,1 Kenneth Lai,2 Mariah Bradford,1 Brittany Cates,1 Paige Hansen,1 Changsoo Jung,1 Brett 
Wisniewski,1 Corbyn Terpstra,1 Leanne Hirshfield,4 Sadhana Puntambekar,3 Nathaniel Blanchard,1 
James Pustejovsky,2 Nikhil Krishnaswamy1

Language English

License CC 4.0

Repository name Zenodo

Publication date 2023-09-27

4 REUSE POTENTIAL
This data was originally gathered to study multimodal indicators of CPS, but its rich 
multichannel nature also lends itself well to other lines of research. Researchers in education 
and learning sciences can use it to develop activities to support collaborative interaction and 
learning. Researchers in linguistics and psychology can use it to study interactive behavior 
and communication, including modeling the evolution of group common ground over time, 
a la Clark and Carlson (1981), and for natural language processing tasks such as assessing 
speech recognition fidelity (e.g., Terpstra et al., 2023, which compared the effects of different 
segmentation methods). The rich multimodality will be of use to researchers in AI. For 
example, the Kinect data can be used to develop and train gesture recognition algorithms 
(e.g., VanderHoeven, Blanchard, & Krishnaswamy, 2023) or object and action detectors. The 
different modalities can serve as signals to an interactive AI agent that assists facilitators and 
scale up collaborative group activities by interpreting key multimodal aspects of collaborative 
group interaction in context (cf. Bradford, Khebour, Blanchard, & Krishnaswamy, 2023). The 
dataset will continue to be updated at the public repository as additional annotations are 
performed, including of object positions, actions taken with the different objects, and of the 
common ground constructed between participants as the task unfolds.

1	 Colorado State University.

2	 Brandeis University.

3	 University of Wisconsin — Madison.

4	 University of Colorado Boulder.
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Potential limitations or issues with reuse may include: while using the Azure (skeleton) data, 
the body IDs in some frames do not align with participant IDs, as the Microsoft tracker assigns 
a new body ID if it loses and regains a participant. The prosodic features, although useful in a 
number of applications, could introduce noise if during a single segmented utterance, more 
than one voice is actually talking at the same time.

Updates will be noted at the dataset link. The data is freely available for research purposes, as 
indicated in the consent form (also available at the dataset link).
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